首席设计师提示您:看后求收藏(棉花糖小说网www.aaeconomics.com),接着再看更方便。

李牧在研究物理问题的时候也能够不断地找到成功道路,同样也是这个原因呢?

德利涅摇着头,心中充满了感叹。

只不过忽然间他的余光一瞥,便见到旁边的怀尔斯就差没有笑开花了。

而怀尔斯也注意到德利涅看了过来,当即就说道:“听到没?李牧都说了,他用到了岩泽理论和科利瓦金—弗莱切方法,这可是我当年用过的方法,你们还质疑我这个老师没有给他带来帮助呢。”

“这种谣言以后可就不能乱说了啊,不然的话我就要告你们诽谤了。”

德利涅顿时就没好气的说道:“李牧使用的岩泽理论和科利瓦金-弗莱切方法,和你当年用的完全不一样好不好,他在伱当初的方法上可是进行了更多的修改,比你当初的结合要完善的更多。”

怀尔斯摊手道:“所以这才是我的学生嘛!怎么?你不服气?”

德利涅更不想理这个家伙了。

就像个小孩子一样,老顽童吗?

当年这个家伙还在普林斯顿高等研究院任教的时候,可不是这个样子的。

当然,虽然心中十分鄙视怀尔斯,但德利涅此时也十分的懊悔。

曾经,他也有一个收李牧为自己学生的机会,但他没有好好珍惜,直到今天他才追悔莫及,如果上帝再给他重来一次的机会——

他一定要抢在怀尔斯之前,给李牧送一份弥足珍贵的礼物。

当初他可是亲眼看着,怀尔斯将那根钢笔送给李牧的。

而他什么都没表示,甚至还给怀尔斯来了个助攻。

早知道会出现今天这样的情况……

悔不当初啊!

……

当然,李牧的这一步,也让其他的学者们体会到了什么叫做天才的思考。

看到这里的时候,他们都会不由自主的将自己代入到李牧的角度中,然后思考自己能否想到利用岩泽理论和科利瓦金-弗莱切方法结合,来解决这个问题,以及之后利用庞特里亚金对偶定理进行处理的思路,最终彻底实现

-模理论和椭圆曲线之间的统一。

最后,

%的人都只能摇摇头,认为自己肯定是想不到这样的思路。

然后还有

%的人,则很果断地没有去想这种事情,他们连做到这一步都做不到,就更不用说再去思考接下来的处理方法了。

当然,还有

%的人就属于比较嘴硬的那种,觉得自己应该能够想到,不过,这类人也都无足轻重了。

而讲台上,李牧完成到了这一步后,接下来的步骤也就变得十分明朗了起来。

简简单单的几步下来之后,李牧最终转过头,笑道:“所以,到这里,我们就很容易地能够得到——”

“所有在

上的椭圆方程,都是

-模的。”

“至此。”

“我们就成功的将椭圆曲线、

理论以及模形式,融合了起来,实现了最后的统一。”

他的双手一张,用宣布的语气道:“暂且先不讨论待会儿对哥德巴赫猜想的证明,到了这一步,我可以十分自信的表示,代数几何,和数论的联系,变得更加紧密了起来。”

“朗兰兹先生所提出的纲领,距离最终的实现也从此更近了一步。”

话一落下,掌声便突然响起,从第一排开始,直到最后,全场的所有人,都鼓起了掌。

实现郎兰兹纲领是所有数学家的共同目标,而李牧做到了这一步,已经值得他们为此送上热烈的掌声了。

听着掌声,李牧也微微一笑,聆听着这热烈的掌声。

而直到掌声渐渐停息,随后他继续道:“另外,我也在这里做一个预测,基于

-模理论下的椭圆曲线,对于解决阿廷猜想有着十分重要的作用。”

“如果各位对解决阿廷猜想感兴趣的话,不妨利用

-模理论下的椭圆曲线尝试一番。”

听到李牧的话,在场的人又都是一愣。

阿廷猜想?

阿廷猜想也是朗兰兹纲领中一个十分重要的问题,因为其直接对应的是朗兰兹纲领两部分之一的函子性猜想,也就是说,证明阿廷猜想将有助于证明函子性猜想,而证明函子性猜想,也就等于将朗兰兹纲领实现了一半。

一时间,许多人都跟着思考了起来,最后纷纷眼前一亮。

确实!

-模理论下的椭圆曲线,对于解决阿廷猜想的确有着十分巨大的帮助。

阿廷猜想推测,既不是平方数也不是-

的给定整数是无穷多个素数

的原始根模,并且在椭圆曲线方面也有着延伸性的讨论,这么一想……

在场的不少人,立马就都作出决定,回去之后就尝试一下研究阿廷猜想。

哪怕证明不出来,取得一些成果,少说也能发一篇一区的论文嘛。

毕竟这可是阿廷猜想!

台上的李牧,将这些听众们的反应尽收眼底,微微一笑,这就是解决一个数学问题的意义。

因为解决一个问题过程中所诞生的理论和方法,将有助于更多问题的解决。

数学,也是由几千年前的

,发展到今天这个模样。

随后,他也重新转过头,继续了接下来的步骤。

“那么,下面就要彻底解决哥德巴赫猜想了——其实到这里,后面的步骤也都十分清楚了。”

“所以,我就不再废话。”

李牧将已经写满的黑板擦干净,然后势如破竹般地进行起接下来的步骤。

场下的听众们也都紧跟着翻看的第二本论文,跟着李牧的证明,继续记起了笔记。

也确实如李牧所说,接下来的步骤十分的清楚,他运用

-模下的椭圆曲线,将圆法十分轻松地代入进去,随后又将筛法进行结合。

直到最后——

“所以,到这里,我们就可以轻松地看到,&#

;&#

;&#

;.

&#

;

.&#

;对于所有大于等于

的偶数

,单位圆上的环路积分式

(

)都是大于

的。”

“我们将其代入到原筛函数中,也可以轻松地验证,λ=

的时候,该筛函数大于零。”

“至此——”

李牧放下了手中的黑板笔,再次看向观众席,干脆利落地宣布道:“显然,我们已经成功地证明了关于偶数的哥德巴赫猜想。”

“哥德巴赫寄出的那封信,在欧拉的手中未能完全启封,于是欧拉又将这封信,寄往了未来。”

“它跨越了时间的长河,在

年后的今天,成功的抵达了终点。”

“我很荣幸,成为它的启封人。”

“谢谢各位!”

(本章完)

请记住本书首发域名:。:

科幻灵异推荐阅读 More+
电影世界分身无限

电影世界分身无限

方尤
电影世界分身无限简介: 哪吒三太子是我的灵魂形象。 吞噬灵魂是我的本领。 我的内力修炼了《葵花宝典》。 割?不存在的!我是说我不用割也能修炼! 我的分身接起来可以绕地球三十圈! 不信?我给你念念: 毒液分身,超人分身,死侍分身,美女分身,佛舍分身,魔戒分身,脑虫分身,巨兽分身,异形分身,星球分身,美女分身,天网分身,惊破天分身,爱丽丝分身,终结者分身,变形金刚分身,钢铁盔甲分身,超级机甲分身,日
科幻 完结 144万字
武侠仙侠之扬我汉威

武侠仙侠之扬我汉威

地坤势
武侠仙侠之扬我汉威简介:
科幻 连载 41万字
奶茶店的驱魂人

奶茶店的驱魂人

变形眼镜
奶茶店的驱魂人简介: 一起学生变成植物人的事件,掀起了尘封的往事,被动卷入其中的奶茶店店长方不觉,不得不再次出手,对抗那些驳杂的山精鬼怪。 真实的简介:一个奶茶店店长不断给喜欢作死的王八蛋们擦屁股的故事。作者已经决定啦,就由你来擦屁股吧。主角“我一个奶茶店店长,怎么就给人擦屁股了?”
科幻 连载 17万字
星河甲士

星河甲士

次品甲士
星河甲士简介: 他创办了自己的联赛,让无数贫穷怀志之人有了圆梦之机! 他组建了自己的机甲军团,在星河之地所向披靡! 他创办了自己的机甲公司,机甲远销各文明等级国度! 不过,当初他真的很穷,很潦倒············ 写网文很不容易,力求支持,大家知道的 收藏,票票全部砸来!!!!
科幻 连载 22万字
我的神仙今天吃饱了

我的神仙今天吃饱了

令如似娇
我的神仙今天吃饱了简介: 道生一,一生二,二生三,三生万物。 道家修身养性为民除害,于乱世出山保家国平安,于盛世隐世祈社稷安康。 张元清六岁便在武当山上打酱油,九岁偷学武当秘籍,十二岁和山上的师兄打架斗殴,打赢了,但没完全打赢,收获了脸上的大脚印和大嘴巴子,还顺便被自己老爹压着拜了三清入了道门。 如果再给张元清一次机会,他保住他一定不会多管闲事!
科幻 连载 9万字
宇宙的征战

宇宙的征战

我爱故我在
宇宙的征战简介: 高端的武器装备,炫目的奇异物种 ,火爆的战争场面,突如其来的战争从 一开始起,直到故事结束。比牛还大的 虫子,比星球还大的太空战舰,无边无 际的宇宙,几大种族开辟的星系团战场 ,火爆而且血腥,人性的自私贪婪,弱 小与强大,将一一呈现……
科幻 连载 66万字